Synthesis Imaging Theory

science and technology

\ Department
_ ndl Technolog
? REPUBLIC OF SOUTH AFRICA




For this, diffraction theory applies - the angular
resolution for a wavelength A is:
© = AD
In ‘practical’ units:

To obtain 1 arcsecond resolution at a wavelength of 21
cm, we require an aperture of ~42 km!

Can we synthesize an aperture of that size with pairs of
antennas?

The methodology of synthesizing a continuous aperture
through summations of separated pairs of antennas is
called ‘aperture synthesis’.

Radio telescopes coherently sum electric fields over

an aperture of size D.



Our Goal: To measure the characteristics of celestial emission
from a given direction s, at a given frequency v, at a given
time t.

In other words: We want a map, or image, of the emission.

Terminology/Definitions: The quantity we seek is called the
brightness (or specific intensity): It is denoted here by
I(s,Vv,t), and expressed in units of: watt/(m2 Hz ster).

It is the power received, per unit solid angle from direction s,
per unit collecting area, per unit frequency at frequency n.

Do not confuse | with Flux Density, S -- the integral of the
brightness over a given sdlig {dds v, 1)dQ

The units of S are: watt/(m2 Hz)
Note: 1]y = 10%® watt/(m2 Hz).



| show below an image of Cygnus A at a frequency of 4995 MHz.
The units of the brightness are Jy/beam, with 1 beam = 0.16 arcsec?2
The peak is 2.6 Jy/beam, which equates to 6.5 x 10-15 watt/(m2 Hz

ster)
The flux density of the source is 370 Jy = 3.7 x 10 ® watt/(m2 Hz)




Imagine a distant source of emission,
described by brightness I(n,s) where s
IS a unit direction vector.

Power from this emission is intercepted
by a collector ('sensor’) of area A(n,s).

The power, P (watts) from a small solid
angle dW, within a small frequency
window dv, is

P =1(u,s)A(u,s)dvdQ
The total power received is an integral

over frequency and angle, accounting
for variations in the responses. Filter width

Sensor Area

Power

P :ﬂl (U,8)A(U,s)dudQ) collecteql5 S



* Coherent interferometry is based on the ability to correlate

the electric fields measured at spatially separated locations.
To do this (without mirrors) requires conversion of the electric
field E(r,v,t) at some place to a voltage V(v,t) which can be
conveyed to a central location for processing.
For our purpose, the sensor (a.k.a. ‘antenna’) is simply a device
which senses the electric field at some place and converts this
to a voltage which faithfully retains the amplitudes and phases
of the electric fields.
One can imagine two kinds of ideal sensors:
An ‘all-sky’ sensor: All incoming electric fields, from all
directions, are uniformly summed.
The ‘limited-field-of-view’ sensor: Only the fields from a given
direction and solid angle (field of view) are collected and
conveyed.
Sadly - neither of these is possible.



*Analysis is simplest if the fields are perfectly monochromatic.

This is not possible - a perfectly monochromatic electric
field would both have no power (Av = 0), and would last
forever!

So we consider instead ‘quasi-monochromatic’ radiation,
where the bandwidth dv is finite, but very small compared
to the frequency: dv <<wv

Consider then the electric fields from a small sold angle dQ
about some direction s, within some small bandwidth dv,
at frequency v.

We can write the temporal dependence of this field as:

The amplitude and phase remains unchanged to a time
duration of order dt ~1/dv, after which new values of E and
@ are needed.



We now consider the most basic interferometer, and seek
a relation between the characteristics of the product of the
voltages from two separated antennas and the distribution
of the brightness of the originating source emission.

To establish the basic relations, the following
simplifications are introduced:

Fixed in space - no rotation or motion
Quasi-monochromatic

No frequency conversions (an ‘RF interferometer’)

Single polarization

No propagation distortions (no ionosphere, atmosphere ...)

Idealized electronics (perfectly linear, perfectly uniform in
frequency and direction, perfectly identical for both
elements, no added noise, ...)
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2 GHz Frequency, with voltages in phase:
b.s = nA, ortg=n/v
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2 GHz Frequency, with voltages in quadrature

phase:
b.s=(n +/- Ya)\, 19 = (4n +/- 1)/4v
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2 GHz Frequency, with voltages out of phase:

b.s=(n +/- Y2)A

19 = (2n +/- 1)/2v
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The averaged product RC is dependent on the received power,
P = E%/2 and geometric delay, tg, and hence on the baseline
orientation and source direction:

WwT = 21ivb.s/c = 21mb.s/A

Note that RC is not a a function of:

The time of the observation -- provided the source itself is not
variable!

The location of the baseline -- provided the emission is in the far-
field.

The actual phase of the incoming signal - the distance of the source
does not matter, provided it is in the far-field.
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To illustrate the response, expand the dot product in one dimension:

Here, u = b/A is the baseline length in wavelengths, and 6 is
the angle w.r.t. the plane perpendicular to the baseline.

I=cos(a) = sin(6)
IS the direction cosine S
4

0

Consider the response Rc, as a function of angle, for two different
baselines with u = 10, and u = 25 wavelengths:

R, =cos(27ud)



Top:
u=10

There are 20
whole fringes
over the
hemisphere.

Bottom:
u=25

There are 50
whole fringes
over the
hemisphere
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Top Panel:

The absolute value of
the response for u =
10, as a function of
angle.

The ‘lobes’ of the
response pattern
alternate in sign.

Bottom Panel:

The same, but for u =
25.

Angular separation
between lobes (of the
same sign) is

00 ~ 1/u = A/b
radians.




The preceding plotis a
meridional cut through the
hemisphere, oriented along the
baseline vector.

In the two-dimensional space,
the fringe pattern consists of a
series of coaxial cones,
oriented along the baseline
vector.

The figure is a two-dimensional
representation when u = 4,

As viewed along the baseline
vector, the fringes show a
‘bulls-eye’ pattern - concentric
circles.




The patterns shown presume the sensor has
Isotropic response.

This iIs a convenient assumption, but (sadly, in
some cases) doesn’t represent reality.

Real sensors impose their own patterns, which
modulate the amplitude and phase, of the output.

Large sensors (a.k.a. ‘antennas’) have very high
directivity --very useful for some applications.



Sensors (or antennas)
are not isotropic, and
have their own
responses.

Top Panel: The
interferometer pattern
with a cos(8)-like
sensor response.

Bottom Panel: A
multiple-wavelength
aperture antenna has
a harrow beam, but
also sidelobes.




 The response from an extended source is obtained by summing
the responses for each antenna over the sky, multiplying, and
averaging:

R =< [VdQ [V dQ, >

C

» The expectation, and integrals can be interchanged, and
providing the emission is spatially incoherent, we get
R =[]l (s)cos(2nv b -s/c)dQ

C

 This expression links what we want — the source brightness on
the sky, | (s), —to something we can measure - RC, the

iInterferometer response.



* The correlator can be thought of ‘casting’ a sinusoidal coherence
pattern, of angular scale A/b radians, onto the sky.
 The correlator multiplies the source brightness by this coherence

pattern, and integrates (sums) the result over the sky.
* Orientation set by baseline
geometry.

Ab rad.
* Fringe separation set by L

i
N
i
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N

(projected) baseline length and
wavelength.
Source

 Long baseline gives close-
packed fringes
» Short baseline gives widely-
separated fringes
* Physical location of baseline A A
unimportant, provided source is — -+ — 4 Fringe Sign
in the far field.



 But the measured quantity, Rc, is insufficient — it is only sensitive
to the ‘even’ part of the brightness, IE(s).
 Any real function, I(x,y), can be expressed as the sum of two real
functions which have specific symmetries:
An even part:

(X y)= 2(1(xy)+1(=-x-y)) =l_(=-%x-Y)

An odd part:
Loy )= (1(xy)=-1(=-x-y))==1,(=-X-Y)

| - |
= | | + _I

O




The correlator response, Rc:
R, = ”IV (s)cos@mvb[$/c)dQ

IS not enough to recover the correct brightness. Why?

Suppose that the source of emission has a component with
odd symmetry:
| (s) =-I (-s)

o

Since the cosine fringe pattern is even, the response of our
interferometer to the odd brightness distribution is 0!

R. = [[l,(s)cos@mvb($/c)dQ =0
Hence, we need more information if we are to completely
recover the source brightness.



The integration of the cosine response, Rc, over the source brightness
IS sensitive to only the even part of the brightness:

R. = ”I (s)cos@mvb[8/c)dQ = ”IE(s)cosQlTvb [$/¢)dQ

since the integral of an odd function (IO0) with an even function (cos Xx)
1S zero.

To recover the ‘odd’ part of the intensity, IO, we need an ‘odd’ fringe pattern.
Let us replace the ‘cos’ with ‘sin’ in the integral

R = [ {(s)5i21 bs/c)dd =( [ (5)sin(2n bls/c)dl

since the integral of an even times an odd function is zero.



B
We generate the ‘sine’ pattern by inserting a 90 degree phase shift
iIn one of the signal path;

[, =b/c //\

S

V=FEcosw(t- T) - -J V = Ecos(ar)
/

multiply P[sin(wr ) +sin(2wt —ar )]

average - O

R, = Psin(wr )



We now DEFINE a complex function, the complex visibility, V, from the two
iIndependent (real) correlator out RC and BS:
g (real \e)=;€ —p?}? :ﬁela

where ¢= tan_l%ﬁ
C

This gives us a beautiful and useful relationship between the source
brightness, and the response of an interferometer:

Under some Cirgranianesss K At eE@Mr'\%'hg lf/bﬁﬁf%@iﬁléﬁ weiBiNeg!l v, fr
established Woiliemdtysrify4m Jémfc)r‘%utputs Flnd Rs:



A correlator which produces both ‘Real’ and ‘Imaginary’ parts — or the
Cosine and Sine fringes, is called a ‘Complex Correlator’

For a complex correlator, think of two independent sets of projected sinusoids, 90
degrees apart on the sky.

In our scenario, both components are necessary, because we have assumed there
is no motion — the ‘fringes’ are fixed on the source emission, which is itself
stationary.

The complex output of the complex correlator also means we can use complex
analysis throughout: Let:

V= Acosr) = RgAe”
V = Acosp(r-b.s/c)]=RdAe“"")

P <VV > pgionsie

Then:

corr



The source brightness is Gaussian, shown in black.

The interferometer ‘fringes’ are in red.

The visibility is the integral of the product — the net dark green area.

Long Baseline

Short Baseline

Response (Power Units)

Response (Power Units)

RC
| Lonlg Bast:'.:line_

1 ncos(‘_’OO) =1
| ] |

-1 0

1 i)

Angle (arbitrary units)

| T T T 1
Shoit Baseline

-1 0 1 2

Angle (arbitrary units)

Response (Power Units)

Response (Power Units)

-1 0 1

- 1,5in(50)

-2

-1 0 1
Angle (arbitrary units)



Simple pictures are easy to make illustrating 1-dimensional visibilities.
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Simple pictures are easy to make illustrating 1-dimensional

visibilities.
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For a zero-spacing interferometer, we get the ‘single-dish’ (total-
power) response.

As the baseline gets longer, the visibility amplitude will in general
decline.

When the visibility is close to zero, the source is said to be
‘resolved out'.

Interchanging antennas in a baseline causes the phase to be
negated — the visibility of the ‘reversed baseline’ is the complex
conjugate of the original.

Mathematically, the visibility is Hermitian, because the brightness
IS a real function.



The Visibility is a unique function of the source brightness.
The two functions are related through a Fourier transform.
V(U,V) < I(Ism)

An interferometer, at any one time, makes one measure of the
visibility, at baseline coordinate (u,v).

Sufficient knowledge of the visibility function (as derived from an
iInterferometer) will provide us a reasonable estimate of the source
brightness.

How many is ‘sufficient’, and how good is ‘reasonable’?

These simple questions do not have easy answers...



The Visibility is a function of the source structure and the
iInterferometer baseline length and orientation.

Each observation of the source with a given baseline length and
orientation provides one measure of the visibility.

Sufficient knowledge of the visibility function (as derived from an
interferometer) will provide us a reasonable estimate of the
source brightness.



! L_.‘!'
S

Real interferometers must accept a range of frequencies. So we now consider
the response of our interferometer over frequency.

To do this, we first define the frequency response functions, G(v), as the
amplitude and phase variation %\t}he signal over frequency.

G

v

vO V

The function G(v) is primarily due to the gain and phase characteristics of the
electronics, but can also contain propagation path effects.
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To find the finite-bandwidth response, we integrate our fundamental response
over a frequency width Av, centered at v :

1 Uy+AU/?2 '
sls Il(s,u)Gl(u)G;‘(u)e"z"“nguEm

V =
J’EAV Uy,—Au/2

If the source intensity does not vary over the bandwidth, and the instrumental
gain parameters G are square and real, then

V= J'EL J‘Ul(s,U)Gl V)G, (V)e T du Efﬂ

@V Uy—Av/2

where the fringe attenuation function, sinc(x), is defined as:



This shows that the source emission is attenuated by the spatially
variant function sinc(x), also known as the ‘fringe-washing’ function.
The attenuation is small when:

TgAU <<]

which occurs when the source offset 0 1s less than: (exercise for the student)
0l _g U

bAU AU

The ratio VO/AV is the inverse fractional bandwidth — for the EVLA, this ratio is never
less than ~500.

The fringe attenuation is infinite (i.e. no response) when
C

BAU

sin @ =



For a square bandpass, the bandwidth attenuation reaches a null at an angle equal to the fringe
separation divided by the fractional bandwidth: Av/v

If Av=2 MHz, and B = 35 km, then the null occurs at about 27 degrees off the meridian.
(Worst case for EVLA).

Fringe Amplitude
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Note: The fringe-
washing function
depends only on
bandwidth and baseline —
not on frequency.



In our basic scenario (stationary source, stationary
iInterferometer), the effect of finite bandwidth can strongly
attenuate the visibility from sources far from the meridional plane.
Suppose we wish to observe an object far from that plane?

One solution is to use a very narrow bandwidth — this loses
sensitivity, which can only be made up by utilizing many channels
— feasible, but computationally expensive.

Better answer: Shift the fringe-attenuation function to the center
of the source of interest.

-Delay compensation



S0 = reference

i VAYY
Stne %7‘9@ direction
\ S = general
r,=b[s,/c ”‘ . direction
T S
0 b o
i(t—T,) _ iw(t—ro)
Vi=Ee = °® ‘ - -J V, =Ee

V=VV, =E% "
172
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v

The entire fringe pattern has been shifted over by
angle

sin 6 = ¢ct0/b



Real interferometers are built on the surface of the earth — a rotating platform. From
the observer’'s perspective, sources move across the sky.

Since we know how to adjust the interferometer to move its coherence pattern to the
direction of interest, it is a simple step to continuously move the pattern to follow a
moving source.

All that is necessary is to continuously slip the inserted time delay, with an accuracy ot
<< 1/Av to minimize bandwidth loss.

For the ‘radio-frequency’ interferometer we are discussing here, this will automatically
track both the fringe pattern and the fringe-washing function with the source.

Hence, a point source, at the reference position, will give uniform amplitude and zero
phase throughout time (provided real-life things like the atmosphere, ionosphere, or
geometry errors don’'t mess things up ... )



So — we can track a moving source, continuously adjusting the
delay, to prevent bandwidth losses.

This also ‘moves’ the cosinusoidal fringe pattern — very
convenient!

From this, you might think that you can increase the time
averaging for as long as you please.

But you can’t — because the convenient tracking only works
perfectly for the object ‘in the center’.

All other sources are moving w.r.t. the fringes ...



Simple derivation of fringe period,
from observation at the NCP.

Interferometer Primary
Beam Half
Power

Fringe Separation
AB

Turquoise area is antenna
primary beam on the sky —
radius = A/D

Interferometer coherence
pattern has spacing = A/B
Sources in sky rotate about
NCP at angular rate:

W, =7.3x10-5 rad/sec.
Minimum time taken for a

source to move by A/B at
angular distance 6 is:

j=A 1 D
Bwl@ wB



In our scenario moving sources and a ‘radio frequency’ interferometer, adding
time delay to eliminate bandwidth losses also moves the fringe pattern.

A major advantage of ‘tracking’ the target source is that the rate of change of
visibility phase is greatly decreased — allowing us to integrate longer, and hence

reduce database size.
How long can you integrate before the differential motion shifts the source

through the fringe pattern?
Worst case: (whole hemisphere): t=A/(Bw_) sec = 83 msec at 21 cm.

Worst case for EVLA: t = D/(Bw_) = 10 seconds. (A-config., max. baseline)
To prevent ‘delay losses’, your averaging time must be much less than this.



This would be the end of the story (so far as the fundamentals are concerned) if
all the internal electronics of an interferometer would work at the observing
frequency (often called the ‘radio frequency’, or RF).

Unfortunately, this cannot be done in general, as high frequency components
are much more expensive, and generally perform more poorly than low
frequency components.

Thus, most radio interferometers use ‘down-conversion’ to translate the radio
frequency information from the ‘RF’, to a lower frequency band, called the ‘IF’ in
the jargon of our trade.

For signals in the radio-frequency part of the spectrum, this can be done with
almost no loss of information.

But there is an important side-effect from this operation in interferometry, which
we NOW review.



At radio frequencies, the spectral content within a passband can be
shifted — with almost no loss in information, to a lower frequency

through multiplication by a ‘LO’ signal.

‘ Sensor Te
\ Filtered
RF In IF Out IF Out
X »| Filter
P(v) P(v) ‘ P(v)
V : vLO v ’ Vv
Original Lower and Upper Lower Sideband

Spectrum Sidebands, plus LO Only



| | E cos(wRFt)

E cos(wlFt-wRF1g) . E cos(wlFt—wlFT10-@LO)

E cos(wlFt-@LO)

(WRF=wLO+wIF)

V = Eze_i(wRFTg ~WirT )~ Pro)



The correct phase is: ~ w_ (Tg -T,)-

The observed phase is: w_ T~ W T = fo

These will be the same when the LO phase is set to:

¢L0 - wLOTO

This is necessary because the delay, T, has been added in the IF portion of the
signal path, rather than at the frequency at which the delay actually occurs.

The phase adjustment of the LO compensates for the delay having been inserted
at the IF , rather than at the RF.



The downconversion interferometer allows us to independently

track the interferometer phase, separate from the delay
compensation.

Note there are now three ‘centers’ in interferometry:
Sensor (antenna) pointing center

Delay (coherence) center

Phase tracking center.

All of these which are normally at the same place — but are not
(aint) necessarily so.



To give better understanding, we now specify the geometry.

Case A: A 2-dimensional measurement plane.

Let us imagine the measurements of Vn(b) to be taken entirely on a
plane.

Then a considerable simplification occurs if we arrange the coordinate
system so one axis is normal to this plane.

Let (u,v,w) be the coordinate axes, with w normal to this plane. All
distances are measured in wavelengths.

b = (Au, Av,Aw) = (Au, Av,0)

The components of the unit direction vector, s, are:
S :(l,m,n) = l,m,\/l—l2 - m”




The unit direction vector s
(I,m,n) on
the (u,v,w) axes. These
components are called the
[%i@ction Cosines.
= 003(03

m =cos(f)
n=cos(8)=~1-1"-m’

The baseline vector b is specified
by its coordinates (u,v,w)
(measured in wavelengths). In
this special case,

b = (Au, Av,0)

v



Then, vb.s/c = u/+ vm + wn = u/+ vm, from which we find,

1, m)

—i271(ul+vm) dldm

V (u,v)= ‘U\/l

which is a 2-dimensional Fourier transform between the projected brightness and
the spatial coherence function (visibility):

[ (I,m)/cos@) « V(u,v)

And we can now rely on a century of effort by mathematicians on how to invert this
equation, and how much information we need to obtain an image of sufficient quality.

Formally, Iv (l,m) — COS(@)HVV (u,v)eizn(ul+vm)dudv

With enough measures of V, we can derive an estimate of /.



All this is just a restatement of the van Cittert-Zernike theorem:

The cross-correlation of the electric field on the image plane
(here on the ground) is the Fourier transform of the radiation
intensity distribution (the image on the sky)

-for more information read Thompson Moran & Swenson



Which interferometers can use this special geometry?

a) Those whose baselines, over time, lie on a plane (any plane).

All E-W interferometers are in this group. For these, the w-coordinate points
to the NCP.

WSRT (Westerbork Synthesis Radio Telescope)

ATCA (Australia Telescope Compact Array)

Cambridge 5km telescope (almost).

b) Any coplanar 2-dimensional array, at a single instance of time.

VLA or GMRT in snapshot (single short observation) mode.

What's the ‘downside’ of 2-d arrays?

Full resolution is obtained only for observations that are in the w-direction.
E-W interferometers have no N-S resolution for observations at the celestial
equator.

A VLA snapshot of a source will have no ‘vertical’ resolution for objects on
the horizon.



Case B: A 3-dimensional measurement volume:

What if the interferometer does not measure the coherence function on a
plane, but rather does it throu Y Iume? In this case, we adopt a

different opqrﬁwatﬁ,ws’ff 2a" G0 B TN grapspssion:

(Note that this is ndt ESQ@S@H@J‘IT&@S%%).

Then, orient the coordinate system so that the w-axis points to the center of
the region of interest, u points east and v north, and make use of the

armall sanAlA arnAdrAavimmAatiAaA -



With this choice, the relation between visibility and intensity becomes:
I,(I,m)  p-zintuevm+w(1=1=m* -D)]

Vo ) = [ dldm

The third term in the phase can be neglected if it is much less than unity:
vvh—\/l—lz -m’

Now, as cos =1-12 —m? Is the polar angle from the delay center,

<<]

[ A . .
6 <|—< 2. /g (angles in radians!)
max W B Syn

If this condition is met, then the relation between the Intensity and the

Visibility again becomes a 2-dimensional Fourier transform:
IV (l, m) e—2i7T(ul+vm)

V. (u,v) =JI\/1 - dldm




Use of the 2-D transform for non-coplanar interferometer
arrays (like the VLA) always result in an error in the images.
Formally, a 3-D transform can be constructed to handle this
problem — see the textbook for the details.

The errors increase inversely with array resolution, and
quadratically with image field of view.

For interferometers whose field-of-view is limited by the
primary beam, low-frequencies are the most affected.

The dimensionless parameter AB/D? is critical:

If AB/D*> 1 --- you’ve got trouble



Obtaining a good image of a source requires adequate ‘coverage’ of
the (u,v) plane.

To describe the (u,v) coverage, adopt an earth-based coordinate grid to
describe the antenna positions:

X points to H=0,0=0 (intersection of meridian and celestial equator)

Y points to H = -6, 6 = 0 (to east, on celestial equator)
Z. points to 6= 90 (to NCP).

Then denote by (Bx, By, Bz) the coordinates, measured in wavelengths, of a
baseline 1n this earth-based frame.

(Bx, By) are the projected coordinates of the baseline (in wavelengths) on the
equatorial plane of the earth.

By is the East-West component

Bz 1s the baseline component up the Earth’s rotational axis.



Then, it can be shown that

sin H COSH

<
IIII__I_II [ ]
I:rll [ ]

0

sind,cosH, sind sinH, coso, b,

cosO cosH, —cosd sinH, sino, B

LTI T ]

The u and v coordinates describe E-W and N-S components of the

projected interferometer baseline.

The w coordinate is the delay distance, in wavelengths between the two

antennas. The geometric delay, T IS given by

A w
T, =—w=—
L ] L ] gl C U [ ]
Its derivative, called the fringe frequency v_is

= =, U Ccos 9,



Each baseline, over 24 hours, traces out an ellipse in the (u,v) plane:

2_}_Hv—BZcos50 Ez - B + B

! H sin 9,

Because brightness is real, each observation provides us a second
point, where: V*(-u,-v) = V(u,v)

A — A single Visibility: V(u,v)
\‘ P
B, + B, coso, I Good UV Coverage
B +R requires many
\/ o BZ COS 50 simultaneous baselines

amongst many antennas,
. or many sequential
U baselines from a few
antennas.
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Snapshot (u,v)
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In order of appearance:

Near-field effects (in solar system)

Earth orientation: Polar motion and earth rotation

lonosphere: - Faraday Rotation, refraction, scintillation (long )
Troposphere: refraction, absorption, emission (short )
Relativistic: 'retarded baseline'

Antenna: off-axis effects, dipoles and feed

Receiver: gain and phase errors

Electronics: bandpasses and internal delay

.. etc



In this necessarily shallow overview, we have covered:

The establishment of the relationship between interferometer
visibility measurement and source brightness.

The situations which permit use of a 2-D F.T.

The restrictions imposed by finite bandwidth and averaging time.
How ‘real’ interferometers track delay and phase.

The standard coordinate frame used to describe the baselines
and visibilities

The coverage of the (u,v) plane.

Later lectures will discuss calibration, editing, inverting, and
deconvolving these data.
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