Data Analysis Tony Foley

tony@hartrao.ac.za

Pre-analys: What, Where How

I have some project I want to study: Is radio data important?

- Cosmology: number counts of AGNs
- Clusters
- Lensing systems
- Nearby extragalactic:
 - HI rotation curves (Dark Matter, holes, cosmic web...)
 - Supernovae, SNRs
 - Nuclei (Black Holes,...)
 - Megamasers
 - Star Forming galaxies
- · Galactic
 - Masers (circumstellar matter)
 - Microquasars
 - WR winds
 - HII regions

How big is it?

Work it the relevant wavelength range and size in λ :

- The size of array/dish should correspond to $D=\lambda/\Theta$ (if λ is in meters and Θ is in radians the D is in meters). e.g
 - 1 ° (0.017 radians at 0.21m corresponds to 12m size), so a dish
- 1 arcmin (at 21cm 700m, so an array)
- 1 arcsecond (at 21cm 40km, so a large array)
- 1 milliarcsecond (at 21cm 40000km, so a space VLBI array)

Think about both the largest and smallest relevant scales!

Getting the data

Find the array you want and (look for archival data or propose)

- · What sensitivity will you need (array collecting area, Tsys,
- Bandwidth, time)
 - noise \propto SEFD/ $\sqrt{(Bandwith*Time)}$
- •Is the biggest structure visible by the array?
 - Mosaic
 - Fill short (zero u,v) spacing with a dish
- What about polarization (what is needed)
- •What about frequency resolution -vital for lines (what velocity or redshift and is it still observable)
- What array /arrays is/are suitable...
- •Propose
 - Make sure you have flux, phase and bandpass calibrators or ask!

External effects

Ionosphere

- Everything goes as λ^2 , so important at long wavelength (>50cm) and unimportant at short wavelength (< 20cm)
- Rotation Measure (function of direction, time of day, state of solar cycle, .)
 - Typically <2 rad/m²
- Depends on where the array is (how close you are to a magnetic pole etc.)
- Hard to follow at sunrise & sunset and often best in winter nights
- Refraction (global and differential)
- How to get the information
 - Internally (rotation of polarization across the band)
 - GPS
 - Ionospheric sounding
 - Model (World Data Center, Boulder Colorado)

External effects -2

Troposphere

- Important at short wavelength (<20cm) and unimportant at short wavelength (>50cm)
- Depends on your weather, so very variable
- Can be a problem for arrays >1km and large fields (>few degrees)
- Refraction (is one global correction enough?)
- Meteorology (pressure)
- Water Vapour Radiometer

Internal effects

- •Telescope beam:
 - Depends on how far off-axis you want to image in units of the telescope primary beam
 - Depends on how circular the beam is
 - Some telescopes have a good(-ish) model
 - Not only amplitude but also polarization cross-talk are effected
 - Easier to model when all telescopes are the same
 - Change as (if) the sky rotates with respect to the telescope axes -parallactic angle
 - Some telescope designs don't rotate with respect to sky
- •How good was the pointing.. differential effects

Interference (alias RFI)

- •Depends on where you are (TV stations, GSM masts, microwave ovens, WLANs, air lanes and the band you observe at)
- Has an intermittent nature
- but everybody gets satellites

What to do?

- Remove it in hardware
 - Reference dish pointing at main culprit (subtract)
- Try fancy removal schemes based on statistics
 - cyclostationary filters, fringe rate and delay filtering, skewness and curtosis statistics....
- Edit the data by hand...

I now have some data...

I Now have my data: what next?

- What data reduction package is suitable
 - AIPS (and ParselTongue python interface) general use
 - CASA (and casapy python interface)
 - MeqTrees (based on casa core libraries)
 - Miriad
 - DIFMAP
 - ...

Basic flow

- 1 Read in the data
- 2. Put know corrections in
- 3. Edit known problems
- 4. Find the calibrators and the field(s) of interest
- 5.Look for a bandpass (**strong**) calibrator and determine bandpass (shape and phase slope) calibrations, then apply them
- 6.Look for a flux density scale calibrator (strong) and apply the flux scale to the phase (point like) calibrator
- 7. Calculate gain and phase corrections from the phase calibrator
- 8. Apply interpolated gain+phase values to the field
- 9. Make dirty map & beam (grid+interpolate, FFT)
- 10. Apply a deconvolution (CLEAN or similar)

Caveats

- •Inspect the corrections before you apply
 - Jumpy phased (>30°) or gain(10%) cal is useless
 - If you cant follow the trend the interpolation won't
- •If you use CLEAN, start small and get large later
- •If your total CLEANed flux is ≪ that the total of the field you are missing something

Slightly harder flow

- Calculate gain and phase corrections from the sources in the field
- 2. Apply interpolated values to field
- 3. Make a new dirty map & beam (grid+interpolate, FFT)
- 4. Apply a deconvolution (CLEAN or similar) and get a new improved set of point sources in the field

Repeat until you hit noise floor or nothing improves

- note that you can lose absolute position information but preserve relative positions in the field (possible problems with alignment for multi-wavelength observing)

This does not cover all cases!

Some alternatives

- Model the data with something other than point sources (like shapelets) -Sarod Yatawatta
 - Sky Sources will not always fall on our pixels (image pixellation problem)
 - Slightly extended sources can be better modelled
- •Subtract sources in the uv-plane (some packages do this)
- •Make differences from your last map à la DIFMAP
- •Model the whole system with a **Measurement Equation** and solve for the parameters without explicit assumptions, but:
 - Few parts of the matrix formulation commute
 - Needs far more observation points (knowns) than parameters (unknowns)
 - It is always iterative

Future concepts

The future has big telescopes (eVLA, eMERLIN, LOFAR, MeerKAT, ALMA) with correspondingly big data sets(100-1000Gbyte):

- •Probably unmanagable by laptop and eyeball inspection!
- •Hardly managable by server and high speed data transfer
- •Maybe DFT (not FFT) by GPU and avoid gridding of u,v data
- •Build better RFI removal systems and time averaging
- Automatic (pipeline) data processing
 - Your pipeline may depend on what you need
- •Connect image (and data?) cubes to virtual observatory systems