#### Writing a good proposal

Amy Mioduszewski (NRAO)



Based on Joan Wrobel's lectures "Sensitivity" and "Proposal Writing" at NRAO's 2008 and 2010 Synthesis Imaging Workshops

## Most important thing: scientific idea

#### Start with scientific idea

- I. Select target list, you need:
  - Flux density
  - Angular size

Can be a guess if you have a good reason for that guess.

- these depend on frequency so this and the next step are intertwined
- 2. figure out what telescope characteristics you need:
  - Frequency
  - Polarization
  - Spectral resolution
  - Sensitivity (bandwidth, time on source)
    I will go into detail on these
  - Largest angular size
  - Angular resolution  $-\theta_{HPBW} = \lambda/B_{max} (rad) \approx 2\lambda(cm)/B_{max}(km)$  (asec)



#### Select and evaluate trial array

- Start with most important requirements: usually frequency, angular resolution and/or sensitivity.
  - Select trial array
    - EVLA, VLBA, ALMA, MERLIN, EVN, GMRT, SMA, CARMA, ATA,, ATCA, LOFAR, LVVA, ASKAP, MEERKAT ...
  - Evaluate: sensitivity, angular resolution and largest angular size



Radio Galaxy Fornax A VLA 1.4 GHz 1.0d x 0.7d R. Ekers NRAO Image Gallery



# Sensitivity (Power and T)

- Radio astronomers refer to the power from signals in the antennas as equivalent temperature (T).
  - Rayleigh-Jeans approximation of radiation from a black body:

 $P = \kappa_B T \varDelta v$  $= g^2 \kappa_B (T_{ant} + T_{sys}) \varDelta v$ 

g– voltage gain

 $T_{ant}$  – antenna temperature (temperature from the source)

 $T_{sys}$ - system temperature (receiver noise+feed losses+spillover +atmospheric emission+ galactic background+cosmic background = $T_{rec}$ + $T_{feed}$ + $T_{spill}$ + $T_{atm}$ + $T_{gal}$ +2.725K)

 $\Delta v$ - observing bandwidth

For full derivation of these and following equations see the "Sensitivity" chapter of <u>Synthesis Imaging in Radio Astronomy II</u> by Wrobel and Walker.



# Sensitivity (K and SEFD)

- Antenna Gain or Sensitivity (K) in degrees/Jy
  - $K = T_{ant}/S$
  - S is the source flux density (Jy)
- System Equivalent Flux Density (SEFD) is the flux density that would deliver the same amount of power.
  - measure of the overall system performance.
  - SEFD= $T_{sys}/K$  (Jy)

| Antenna              | Diameter (m) | SEFD (Jy) |
|----------------------|--------------|-----------|
| Effelsberg (Germany) | 100          | 39        |
| 1 EVLA antenna (USA) | 25           | 310       |
| Medicina (Italy)     | 32           | 221       |
| Haystack (USA)       | 36           | 606       |

Example SEFDs at 5 GHz



# The two sensitivities you should care about I

- I. Sensitivity on one baseline ( $\Delta S_{ij}$ )
  - Important because it tells you how strong a source has to be to self-calibrate and/or be a phase calibrator. The baseline sensitivity between two antennas *i* and *j* is:

$$\Delta S_{ij} = \frac{1}{\eta_s} \times \sqrt{\frac{SEFD_i \times SEFD_j}{2 \times \Delta \nu \times \tau_{acc}}}$$

- $\eta_s$  is the system efficiency factor (usually ~I)
- $\tau_{acc}$  is the time accumulated on source
- E.g., for a  $\Delta S_{ij}{\approx}10mJy$  you will need a 50mJy phase calibrator to get 5 $\sigma$  phase solutions.
- If antennas are identically implified by  $\Delta S = \frac{\eta_s}{\eta_s} \times \frac{\eta_s}{\sqrt{2 \times \Delta v \times \tau_{acc}}}$



# The two sensitivities you should care about II

- 2. Image sensitivity ( $\Delta I_m$ )
  - Important because it tells you how faint a source you can detect in a given amount of time  $(\tau_{acc})$  and bandwidth  $(\Delta v)$ .

$$\Delta I_m = \frac{1}{\eta_s} \times \frac{SEFD}{\sqrt{N \times (N-1) \times \Delta \nu \times t_{int}}}$$

- N-- number of elements in the array
- This assumes identical antennas
- E.g., if  $\Delta I_m \approx 10 \mu$ Jy/beam for a two hour observation a 100 $\mu$ Jy source will be detected at 10 $\sigma$ . For a four hour observation  $\Delta I_m$  will decrease by  $\sqrt{2}$  to 7 $\mu$ Jy/beam.
- If you are lucky the telescope you want to use will have an on-line sensitivity calculator. Most do these days.



# Things I glossed over when talking about Sensitivity

What can degrade sensitivity (besides bad data and calibration errors):

- I. Confusion : if you go deep enough you will encounter background sources, especially for short baseline/low frequency arrays.
  - Not a problem for VLBI, big problem for LWA
- 2. Dynamic range: there is usually a dynamic range limit so for very bright sources there is a noise limit that is higher than the theoretical noise.
- 3. Even "identical" antennas are not really "identical"
- 4. Using Fast Fourier Transforms degrades images towards the edges
- 5. Weighting
  - Best sensitivity for natural weighting (do not down weight any data)
  - But in some cases other weighting schemes (uniform, robust, tapering) are preferred which decrease the sensitivity.
- 6. Beam squint, non-coplanar arrays, w-projection, unmodeled spectral index across bandwidth, polarization leakage...



### Largest Angular Scale

Definition: the largest structure in the source that can be reliably imaged

• The telescope will not measure flux on scales larger than

 $\approx 2\lambda(cm)/B_{min}(km)$  (asec)

 But to reliably image something you need decent uv-coverage so the LAS is smaller than that the above calculation. This depends on the telescope but a good rule of thumb is the use twice the B<sub>min</sub> so:

 $\theta_{LAS} \approx \lambda(cm)/B_{min}(km)$  (asec)





# Evaluate Trial Array (cont.)

After the numbers work out then consider:

- Special needs
  - Redshifted HI ?
  - Redshifted CO ?
- Geometry
  - Target above elevation limit ?
  - Snapshot or full u-v coverage ?
- Image sensitivity
  - Dynamic-range limited ?



Supernova Remnant Crab Nebula VLA 5GHz 7' x 5' M. Bietenholz



## **Evaluate Trial Array (more)**

- Enough field of view ?
  - Primary beam attenuation
  - Bandwidth smearing
  - Time-average smearing
  - Non-coplanar baselines
- Optimal timeframes ?
  - Time of day
  - Season
  - Year ~ sunspot number
- If trial array fails, pick another
- If trial array passes, search its archive for suitable data
  - Write proposal



#### Sun TRACE X-rays



# Finally:Write the proposal

#### Draft a scientific justification

- Write to astrophysically-literate but non-expert reviewers
- Give science context and motivation
- Pose specific science questions
- State specific science goals
- Describe target selection criteria
- Say how the proposed observations will ...
  - Answer the science questions
  - Achieve the science goals
- Include a clear and concise technical justification.
- Remember that reviewers will be reading tens of proposals so:

Be quantitative! Be clear! Lists are good!

200 kpc HI Ring in Leo Group Arecibo 1.4 GHz S. Stierwalt Primordial versus tidal ring ? Look for dark halos in dwarfs •





# Yet another temperature: Brightness Temperature

Definition: Rayleigh-Jeans temperature of a black body that would radiate the same power/unit area/unit frequency interval/unit solid angle as what is measured.

$$T_B = \frac{c^2}{2\kappa_B \upsilon^2} \frac{S}{\Omega}$$

- S is the flux density.

- For an optically thick thermal source this is the real temperature of the source.
- For an *optically thin thermal source* this is the *lower limit* of the temperature of the source.
- For a non-thermal (e.g., synchrotron radiation, maser emission...) source it has no relation to temperature but can show that the emission mechanism *is* non-thermal:
  - $T_B \sim 10^{12}$ : so high nothing could be that hot
  - $T_B \sim 10^7$ : so high that it would be radiating like crazy in other bands (like the X-ray) and that is not seen.



### Yet another temperature: Brightness Temperature

- Why do you care in a proposals lecture?
- It is another way to evaluate a telescope
- You can calculate the Tb sensitivity of a telescope

$$T_{B,\min} = \frac{2\ln 2}{\pi} \frac{c^2}{\kappa_B} \frac{\Delta I}{\upsilon^2 \theta_{HPBW}}$$



