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Outline of Talk

Quick Review of How Interferometry Works

Overview of a few Interferometric Arrays
— VLA, WSRT, GMRT, VLBA, MeerKAT

Parameters of Array Design
— min/max baseline lengths, number of elements, etc.

Figures of Merit for Arrays Designs

— resolution, angular scale, sidelobe levels, etc.
Optimizing Array Configurations

— continuous example

— discrete example (LWIA)

Large N, Small D concept




Single Baseline Interferometry

A single baseline has a sinusoidal sensitivity pattern across the sky,
oscillating between constructive and destructive interference.
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Single Baseline Interferometry

The oscillations in the sensitivity pattern have the same direction as the

baseline, with a period determined by the baseline length in wavelengths
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Point Spread Function for the VLA

The uv-coverage is the set of all The synthesized beam (PSF) is the
baseline vectors. sensitivity pattern of all baselines.

Snapshot UV Coverage | Point.Spread Function
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Point Spread Function for the VLA

1 Hour Synthesis Observation

UV Coverage 5= 45°_j Point Spread Function
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Point Spread Function for the VLA

3 Hour Synthesis Observation
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Point Spread Function for the VLA

12 Hour Synthesis Observation

| Point Spread Function
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Compensating for Incomplete uv-Coverage

* Deconvolution
— works well for simple sources
— breaks down for large complex sources

« Multi-Frequency Synthesis

— combine data from a wide range of frequencies in the
uv-plane

— greatly increases uv-coverage
— need to deal with spectral variations




Importance of uv-coverage

Resolution
— determined by the longest baselines in the array

Sensitivity to large scale structure
— determined by the shortest baselines in the array

Image fidelity

— ability to reconstruct complex source structure
— gaps in uv-coverage will limit this

Image Dynamic Range

— can be limited by side-lobes in the beam




Westerbork Synthesis Radio Telescope
Located in Westerbork, Holland
Has 14 antennas, 25m diameter
East-West Array

Requires Earth Rotation Synthesis for
all imaging

Dedicated in 1970: one of the earliest

major interferometric arrays

WSRT Array Design Overhead Snapshot UV Coverage
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Westerbork Synthesis Radio Telescope

WSRT uv-coverage at various declinations
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Expanded Very Large Array (EVLA)

* Y-shaped Array
« Re-configurable

Config. B, _, (km) B . (km)
36 0.68
11 0.24
3.4 0.045
1.0 0.035

VLA Array Design Overhead Snapshot UV Coverage
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Very Large Array (VLA)

VLA uv-coverage at various declinations
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VLA — Pie Town Link

Links (by fiber-optic cable)
the VLBA antenna at Pie
Town to the VLA

Increases longest baseline
from 35 to 73 km

VLA + Pie Town Link: Array Design

Best at high declinations
Best with long uv-tracks




VLA — Pie Town Link

VLA+PT uv-coverage at various declinations
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GMRT ARRAY CONFIGURATION

. Located near Khodad, India
- Contains 30 antennas each with 45m diameter
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Very Long Baseline Array (VLBA)

Built in 1995
10 VLA-type antennas

Spread throughout
continental US plus
Hawaii and St. Croix

Maximum baseline over
8,000 km

Elements not
electronically connected

— must bring recorded data to
central correlator

Can achieve resolution of
milli-arcseconds




Very Long Baseline Array (VLBA)

VLBA uv-coverage at various declinations

Full Synthesis UV Coverage —Full Synthesis UV Coverage

-10000 -5000 0 5000 km — —— -10000 -5000 0 5000 km
| |

Full Synthesis UV Coverage & = 0°—-TFull Synthesis UV Coverage & = —10°+-Full Synthesis UV Coverage &§=-30°

-10000 -5000 0 5000 km —— - 10000 -5000 0 5000 km —— -10000 -5000 0 5000 km
L L L L | L L L L | L L L L | L L L L JJJ' L L L L | L L L L | L L L L | L L L L JJJ' L L L L | L L L L | L L L L | L L L L

Tracks: elevation > 10 degrees




MeerKAT

« Central Array
« 80 x 12 meter antennas
« Baselines from 20 m to 8 km
« Spur
* [ antennas, designed to give long east-west baselines

* baselines up to 60 km

Tentative configuration of
Central Array (Booth et al.
2010)




MeerKAT

MeerKAT uv-coverage at various integrations
for a source with a declination of -30°
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Main Parameters of Array Configuration

Maximum Baseline Length
— Determines the resolution

Minimum Baseline Length
— Determines the sensitivity to large scale features

Number of Elements (N)

— Limiting factor in how low sidelobes can be
— This will affect the ultimate dynamic range achievable

Array shape

— This determines uv-coverage and distribution




Main Parameters of Array Configuration

* Long Baselines: Determine resolution
« Short Baselines: Detect large scale features
Abell 2256 at 1369 MHz

VLA C-configuration : VLA D-configurations
- . » .

Images from Clarke & Ensslin, 2006




Effect of the range of baseline lengths

* The dynamic range between the longest and shortest
baselines must be sufficient for the ratio of source size
to the desired resolution.

Radio Galaxy Hydra A at 330 MHz

3 \

VLA A-configuration VLA A+B+C-configurations

Images courtesy of W.M. Lane
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VLA B-configuration UV Coverage
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Effect of a central core

Including a
compact core can
Increase the
baseline length
dynamic range

A core will also
Introduce non-
uniformity in the
uv-coverage

This can be
corrected with
UECERICIIRES




Various Array Designs

» Circular Circular Design: N = 45
— maximizes number of long Circular Design: N = 45 ‘

baselines v sinre
« Spiral
— has more short baselines

e Random

— has little redundancy or
patterns

Spiral Design: N =45
Spiral Design: N =45

Overhead Snapshot UV Coverage Overhead Snapshot UV Coverage
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Nearby Side-lobes: dominated by uv-distribution

« Even with perfect uv-coverage the distribution or
weighting can cause sidelobes:

Uniform distribution Gaussian Distribution

uv-distribution uv-distribution
! I ! ! ! ! I ! ! ! ! I ! ! ! ! ! ! ! ! ! ! I ! ! ! !

1 1 1 1 1 1
0

Beam Shape




Distant Side-lobes: Dependence on N

Distant side-lobes are caused by gaps in the uv-
coverage.

RMS value of distant side-lobes is proportional to the
square root of the number of uv-data points (assuming
a random distribution)

For a randomly distributed array, this means that the
side-lobes will have an RMS value of ~1/N

This can be much higher for non-random distributions
— repetitions from patterns will result in much higher side-lobes

Optimization can reduce this somewhat for a small
region




Metrics for Optimization

Side-lobe levels
— Useful for image dynamic range

Range of baseline lengths

— Useful for large complex sources
Largest gaps in uv-coverage
— Image fidelity

Baseline length distribution
— So that uv-weighting, which reduces sensitivity, is not needed




Array Optimization

Trial and Error

— devise configurations and calculate metrics (works OK for small N)

Random Distribution

— Lack of geometric pattern reduces redundancy
— Works surprisingly well for large N

Simulated Annealing (Cornwell)

— Define uv ‘energy’ function to minimize — log of mean uv distance

UV-Density & pressure (Boone)

Paa il ol

[T
differences with ideal uv denS|ty (e.g., Gaussian)

Genetic algorithm (e.g., Cohanim et al.,2004)

— Pick start configurations, breed new generation using crossover
and mutation, select, repeat

PSF optimization (L. Kogan)

— Minimize biggest sidelobe using derivatives of beam with respect to
antenna locations (iterative process)




Iterative minimization of sidelobes: Kogan Method

q N . ‘ ‘ I ‘ I ‘ ‘ I ‘ I
Comparing random versus optimized Random DestgnsN =271
arrays for N = 271

Random Arrey

L I L
~10
Optimized Array

I 1 1 1 1 I 1 1 1 1 I 1
-10 0 10
Distance from phase center (in units of A/D)




Simulations

« Simulations are the ultimate test of array design
— see how well the uv-coverage performs in practice

« Consider likely target objects
— Generate realistic models of sky
— Simulate data, adding in increasing levels of reality

« Atmosphere, pointing errors, dish surface rms etc.

— Process simulated data & compare final images for different
configurations — relative comparison

— Compare final images with input model
* Image fidelity — absolute measure of goodness of fit
« Compare with specifications for dynamic range and fidelity




Real World Example: Long Wavelength Array (LWA)

34

i

; LWACm e o . Long Wavelength Array (LWA)

New low-frequency telescope (10-
88 MHz) in New Mexico

52 stations of 256 phased dipoles
serve as 'antennas’

Intermediate array will have core
plus 10 outlier sites

Need to find best 10 outlier sites
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Real World Example: Long Wavelength Array (LWA)
s s - Designing the LWA

— 10 sites are needed

15 sites found to be suitable
based on topography and access
to roads, fiber and power lines.

4 sites are “fixed’:
« MC, SJ and AC for resolution

« VL is already used for prototypes

Need to choose best 6 of
ICIIIdiIIiIIg 4I4I

462 different options!




Simulating the Long Wavelength Array (LWA)
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Simulated LWIA Image (74 MHz)

« Simulating Image Fidelity

— Project model image to
simulated uv-coverage and
Image in normal way

— Subtract model to examine
residual image errors

— Can define: Fidelity Index =
(peak intensity)/(residual rms)




Fidelity Index vs Declination
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 Fidelity Index for two possible array configurations
— Full time synthesis
— Various source declinations




Determining the Relevant Figure of Merit
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Fidelity Index based Figures of Merit for all possible array configurations




Rating of Possible Station Sites

e 8 Fixed Sites:
' — VL, MC, SJ, AC

“Optional” Sites
Rated by frequency
within “top 10”
configurations:

— HS — 10/10
- SV—- 910
— BH — 8/10
HM — 7/10
MA — 7/10
EA — 6/10
PT — 6/10
RC — 4/10
VS — 3/10
AM — 0/10
TP — 0/10




Large-N / Small-D Concept

N = number of antennas in array

D = diameter of antennas in array

Collecting Area (ND?) kept constant

uv-coverage is drastically improved while the point-

source sensitivity is unchanged

This can also be the most cost effective way to achieve
the desired collecting area




Large-N / Small-D Concept

Advantages of higher N (at constant ND?)

« Synthesized beam sidelobes decrease as ~1/N
* Field of view increases as ~N (for dishes)

« Redundancy of calibration increases as N

* uv-tracks crossings increase as N*

Disadvantages of higher N (at constant ND?)
« Computation times can increase by up to N4 !!!
N2 times more baselines
N times as many pixels in the FOV
N2 times as much channel resolution needed
N2 times as much time resolution needed

* Need correlator with more capacity
* Higher data rate




Large-N / Small-D Concept

N = 500 Random Array
« N =500
* Elements placed randomly
within 200 km radius 200 km

Random placement
“biased” towards array
center for more shorter
EREINES

Random Array Design (N = 500)

-200

-200 -100 100 200 km




Large-N / Small-D Concept

N = 500 Random Array

Overhead Snapshot UV Coverage




Large-N / Small-D Concept
N = 500 Random Array (magnified 10X)

Ashot UV €




Large-N / Small-D Concept
N = 500 Random Array (magnified 100X)

O\ erhead Snapshot UV Coverage o




Large-N / Small-D Concept
N = 500 Random Array (magnified 1000X)

Overhead S.,népghot UV_éoverage .

250 m




Large-N / Small-D Concept

ALMA: > 50 antennas (re-configurable)
LOFAR, LWA: > 50 stations

Allen Telescope Array: N = 350
Square Kilometer Array: N ~1000

AIIen Telescope Array (Artlst Rendltlon)




Conclusion: Determining Array Parameters

Longest Baseline

— resolution needed: determined by science requirements, physical
constraints

Shortest Baseline
— largest angular scale needed: determined by science requirements

Number of Antennas (elements): N

— Determined by budget constraints (higher N is nearly always better)
Configuration of N elements

— Determine figure of merit for the anticipated science goals

— Maximize the figure of merit within the given “practical” constraints
on element placement.




Hands on session

Please download the data from:
« www.hartrao.ac.za/~nadeem/Sythesis school

Please pick up handouts outside (tomorrow):

» Appendix E (Special considerations for EVLA data) from the
AIPS cookbook

* Log of the observation we will be looking at




