Array Configuration

Amy Mioduszewski NRAO (based Aaron Cohen's lecture at NRAO's 2008 Synthesis Imaging Workshop)

Synthesis Imaging in Radio Astronomy

Outline of Talk

- Quick Review of How Interferometry Works
- Overview of a few Interferometric Arrays
 - VLA, WSRT, GMRT, VLBA, MeerKAT
- Parameters of Array Design
 - min/max baseline lengths, number of elements, etc.
- Figures of Merit for Arrays Designs
 - resolution, angular scale, sidelobe levels, etc.
- Optimizing Array Configurations
 - continuous example
 - discrete example (LWIA)
- Large N, Small D concept

Single Baseline Interferometry

A single baseline has a sinusoidal sensitivity pattern across the sky, oscillating between constructive and destructive interference.

Single Baseline Interferometry

The oscillations in the sensitivity pattern have the same direction as the baseline, with a period determined by the baseline length in wavelengths

The uv-coverage is the set of all baseline vectors.

The synthesized beam (PSF) is the sensitivity pattern of all baselines.

1 Hour Synthesis Observation

3 Hour Synthesis Observation

12 Hour Synthesis Observation

Compensating for Incomplete uv-Coverage

Deconvolution

- works well for simple sources
- breaks down for large complex sources
- Multi-Frequency Synthesis
 - combine data from a wide range of frequencies in the uv-plane
 - greatly increases uv-coverage
 - need to deal with spectral variations

Importance of uv-coverage

- Resolution
 - determined by the longest baselines in the array
- Sensitivity to large scale structure
 - determined by the shortest baselines in the array
- Image fidelity
 - ability to reconstruct complex source structure
 - gaps in uv-coverage will limit this
- Image Dynamic Range
 - can be limited by side-lobes in the beam

Westerbork Synthesis Radio Telescope

- Located in Westerbork, Holland
- Has 14 antennas, 25m diameter
- East-West Array
- Requires Earth Rotation Synthesis for all imaging
- Dedicated in 1970: one of the earliest major interferometric arrays

Westerbork Synthesis Radio Telescope

WSRT uv-coverage at various declinations

Expanded Very Large Array (EVLA)

Very Large Array (VLA)

VLA uv-coverage at various declinations

VLA – Pie Town Link

- Links (by fiber-optic cable) the VLBA antenna at Pie Town to the VLA
- Increases longest baseline from 35 to 73 km
- Best at high declinations
- Best with long uv-tracks

VLA – Pie Town Link

VLA+PT uv-coverage at various declinations

Giant Metrewave Radio Telescope (GMRT)

- Located near Khodad, India
- Contains 30 antennas each with 45m diameter

Giant Metrewave Radio Telescope (GMRT)

GMRT uv-coverage at various declinations

Very Long Baseline Array (VLBA)

- Built in 1995
- 10 VLA-type antennas
- Spread throughout continental US plus Hawaii and St. Croix
- Maximum baseline over 8,000 km
- Elements not electronically connected
 - must bring recorded data to central correlator
- Can achieve resolution of milli-arcseconds

Very Long Baseline Array (VLBA)

VLBA uv-coverage at various declinations

MeerKAT

- Central Array
 - 80 x 12 meter antennas
 - Baselines from 20 m to 8 km
- Spur
 - 7 antennas, designed to give long east-west baselines
 - baselines up to 60 km

Tentative configuration of *Central Array* (Booth et al. 2010)

MeerKAT

MeerKAT uv-coverage at various integrations for a source with a declination of -30°

Main Parameters of Array Configuration

- Maximum Baseline Length
 - Determines the resolution
- Minimum Baseline Length
 - Determines the sensitivity to large scale features
- Number of Elements (N)
 - Limiting factor in how low sidelobes can be
 - This will affect the ultimate dynamic range achievable
- Array shape
 - This determines uv-coverage and distribution

Main Parameters of Array Configuration

- Long Baselines: Determine resolution
- Short Baselines: Detect large scale features
 <u>Abell 2256 at 1369 MHz</u>

VLA D-configuration.

Images from Clarke & Ensslin, 2006

Effect of the range of baseline lengths

 The dynamic range between the longest and shortest baselines must be sufficient for the ratio of source size to the desired resolution.

Radio Galaxy Hydra A at 330 MHz

VLAA-configuration

VLAA+B+C-configurations Images courtesy of W.M. Lane

Effect of a central core

Including a compact core can increase the baseline length dynamic range A core will also introduce nonuniformity in the uv-coverage This can be

ullet

ullet

500 m

500 m

corrected with more antennas

Various Array Designs

- Circular
 - maximizes number of long baselines
- Spiral
 - has more short baselines
- Random
 - has little redundancy or patterns

Spiral Design: N = 45

Circular Design: N = 45

Random Design: N = 45

Nearby Side-lobes: dominated by uv-distribution

 Even with perfect uv-coverage the distribution or weighting can cause sidelobes:

Uniform distribution

Gaussian Distribution

Distant Side-lobes: Dependence on N

- Distant side-lobes are caused by gaps in the uvcoverage.
- RMS value of distant side-lobes is proportional to the square root of the number of uv-data points (assuming a random distribution)
- For a randomly distributed array, this means that the side-lobes will have an RMS value of ~1/N
- This can be much higher for non-random distributions
 repetitions from patterns will result in much higher side-lobes
- Optimization can reduce this somewhat for a small region

Metrics for Optimization

- Side-lobe levels
 - Useful for image dynamic range
- Range of baseline lengths
 - Useful for large complex sources
- Largest gaps in uv-coverage
 - Image fidelity
- Baseline length distribution
 - So that uv-weighting, which reduces sensitivity, is not needed

Array Optimization

- Trial and Error
 - devise configurations and calculate metrics (works OK for small N)
- Random Distribution
 - Lack of geometric pattern reduces redundancy
 - Works surprisingly well for large N
- Simulated Annealing (Cornwell)
 - Define uv 'energy' function to minimize log of mean uv distance
- UV-Density & pressure (Boone)
 - Steepest descent gradient search to minimize uv density differences with ideal uv density (e.g., Gaussian)
- Genetic algorithm (e.g., Cohanim et al.,2004)
 - Pick start configurations, breed new generation using crossover and mutation, select, repeat
- PSF optimization (L. Kogan)
 - Minimize biggest sidelobe using derivatives of beam with respect to antenna locations (iterative process)

Iterative minimization of sidelobes: Kogan Method

32

Simulations

- Simulations are the ultimate test of array design
 - see how well the uv-coverage performs in practice
- Consider likely target objects
 - Generate realistic models of sky
 - Simulate data, adding in increasing levels of reality
 - Atmosphere, pointing errors, dish surface rms etc.
 - Process simulated data & compare final images for different configurations – relative comparison
 - Compare final images with input model
 - Image fidelity absolute measure of goodness of fit
 - Compare with specifications for dynamic range and fidelity

Real World Example: Long Wavelength Array (LWA)

- Long Wavelength Array (LWA)
 - New low-frequency telescope (10-88 MHz) in New Mexico

34

- 52 stations of 256 phased dipoles serve as 'antennas'
- Intermediate array will have core plus 10 outlier sites
- Need to find best 10 outlier sites

Real World Example: Long Wavelength Array (LWA)

- Designing the LWA
 - 10 sites are needed
 - 15 sites found to be suitable based on topography and access to roads, fiber and power lines.

35

- 4 sites are "fixed":
 - MC, SJ and AC for resolution
 - VL is already used for prototypes
- Need to choose best 6 of remaining 11
- 462 different options!

Simulating the Long Wavelength Array (LWA)

ullet

Cygnus A at 325 MHz with VLA A-configuration + PT

Residual Map (model subtracted)

Simulated LWIA Image (74 MHz)

- Simulating Image Fidelity
 - Project model image to simulated uv-coverage and image in normal way
 - Subtract model to examine residual image errors
 - Can define: Fidelity Index = (peak intensity)/(residual rms)

Fidelity Index vs Declination

- Fidelity Index for two possible array configurations
 - Full time synthesis
 - Various source declinations

Determining the Relevant Figure of Merit

Fidelity Index based Figures of Merit for all possible array configurations

Rating of Possible Station Sites

- Fixed Sites:
 - VL, MC, SJ, AC
- "Optional" Sites Rated by frequency within "top 10" configurations:
 - $HS \rightarrow 10/10$
 - SV \rightarrow 9/10
 - BH \rightarrow 8/10
 - $HM \rightarrow 7/10$
 - MA \rightarrow 7/10
 - EA \rightarrow 6/10
 - PT \rightarrow 6/10
 - RC \rightarrow 4/10
 - VS \rightarrow 3/10
 - AM \rightarrow 0/10
 - TP \rightarrow 0/10

- N = number of antennas in array
- D = diameter of antennas in array
- Collecting Area (ND²) kept constant
- uv-coverage is drastically improved while the pointsource sensitivity is unchanged
- This can also be the most cost effective way to achieve the desired collecting area

Advantages of higher N (at constant ND²)

- Synthesized beam sidelobes decrease as ~1/N
- Field of view increases as ~N (for dishes)
- Redundancy of calibration increases as N
- uv-tracks crossings increase as N⁴

Disadvantages of higher N (at constant ND²)

- Computation times can increase by up to N⁴ !!!
 - N² times more baselines
 - N times as many pixels in the FOV
 - N^{1/2} times as much channel resolution needed
 - $N^{1/2}$ times as much time resolution needed
- Need correlator with more capacity
- Higher data rate

N = 500 Random Array

- N = 500
- Elements placed randomly within 200 km radius
- Random placement "biased" towards array center for more shorter baselines

42

N = 500 Random Array

N = 500 Random Array (magnified 10X)

Overhead Snapshot UV Coverage

-25 0 25 km

N = 500 Random Array (magnified 100X)

N = 500 Random Array (magnified 1000X)

- ALMA: ≥ 50 antennas (re-configurable)
- LOFAR, LWA: \geq 50 stations
- Allen Telescope Array: N = 350
- Square Kilometer Array: N ~1000

Allen Telescope Array (Artist Rendition)

Conclusion: Determining Array Parameters

- Longest Baseline
 - resolution needed: determined by science requirements, physical constraints
- Shortest Baseline
 - largest angular scale needed: determined by science requirements
- Number of Antennas (elements): N
 - Determined by budget constraints (higher N is nearly always better)
- Configuration of N elements
 - Determine figure of merit for the anticipated science goals
 - Maximize the figure of merit within the given "practical" constraints on element placement.

Please download the data from:

www.hartrao.ac.za/~nadeem/Sythesis_school

Please pick up handouts outside (tomorrow):

- Appendix E (Special considerations for EVLA data) from the AIPS cookbook
- Log of the observation we will be looking at