

Cross Correlators & New Correlators Michael P. Rupen *NRAO/Socorro*

What is a correlator?

- In an optical telescope...
 - a lens or a mirror collects the light & brings it to a focus

a spectrograph separates the different frequencies

• In an interferometer, the correlator performs both these tasks, by correlating the signals from each telescope (antenna) pair:³

•The basic observables are the complex visibilities: amplitude & phase as functions of baseline, time, and frequency.

•The correlator takes in the signals from the individual telescopes, and writes out these visibilities.

Correlator Basics

The cross-correlation of two real signals $v_i(t)$ and $v_j(t)$ is

$$x_{ij}(\tau) \equiv \langle v_i(t) \, v_j(t+\tau) \rangle$$

A simple (real) correlator.

The University of New Mexico

τ=1:

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

→Correlation:

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

Correlation of a Single Frequency

For a monochromatic signal:

$$v_i(t) = \sin 2\pi\nu_0 t$$

$$v_j(t) = \sin (2\pi\nu_0 t + \phi)$$

and the correlation function is

1)

$$\begin{aligned} x_{ij}(\tau) &= \left\langle \sin 2\pi\nu_0 t \right\rangle \sin \left(2\pi\nu_0 \left(t + \tau \right) + \phi \right) \right\rangle \\ &= \mathbf{x}_R \cos 2\pi\nu_0 \left(\tau - \tau_0 \right) + \mathbf{x}_I \sin 2\pi\nu_0 \left(\tau - \tau_0 \right) \end{aligned}$$

So we need only measure $R_{ij} = x_R + i x_I$, with

•
$$x_R = x_{ij}(\tau_0)$$

• $x_I = x_{ij}(\tau_0 + \Delta \tau)$, with $\Delta \tau = 1/(4\nu_0)$ ($\Delta \phi = 90^\circ$).

→Correlation:

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

At a given frequency, all we can know about the signal is contained in two numbers: the real and the imaginary part, or the amplitude and the phase.

A complex correlator.

Broad-band Continuum Correlators

1. The simple approach:

- use a filterbank to split the signal up into quasimonochromatic signals at frequencies ν_k
- hook each of these up to a different complex correlator, with the appropriate (different) delay: $\Delta \tau_k = 1/(4\nu_k)$
- add up all the outputs

2. The clever approach:

instead of sticking in a delay, put in a filter that shifts the phase for *all* frequencies by $\pi/2$

Figure 4-4. A wide-band complex correlator synthesized from narrow-band complex correlators, or a spectroscopic correlator. Each box labeled "CC" is as indicated in Figure 4-3.

Spectral Line Correlators

- 1. The simple approach:
 - use a filterbank to split the signal up into quasimonochromatic signals at frequencies ν_k
 - hook each of these up to a different complex correlator, with the appropriate (different) delay: $\Delta \tau_k = 1/(4\nu_k)$
 - record all the outputs: $R_{ij}(\nu, t)$

Fourier Transforms: a motivational exercise

Short lags (small delays)
↔ high frequencies
Long lags (large delays)
↓ low frequencies

⇒Measuring a range of lags corresponds to measuring a range of frequencies

The frequency spectrum is the Fourier transform of the cross-correlation (lag) function.

Spectral Line Correlators (cont'd)

2. Clever approach #1: the FX correlator

- F: replace the filterbank with a Fourier transform
- X: use the simple (complex) correlator above to measure the crosscorrelation at each frequency
- average over time
- record the results
- Examples: NRO, VLBA, DiFX, ACA
- 3. Clever approach #2: the XF (lag) correlator
 - X: measure the correlation function at a bunch of different lags (delays)
 - average over time
 - F: Fourier transform the resulting time (lag) series to obtain spectra
 - record the results
 - Examples: VLA, IRAM; preferred for >20 antennas

FX vs. XF

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

Fig. 4-6: FX correlator baseline processing.

Fig. 4-1: Lag (XF) correlator baseline processing.

Spectral Line Correlators (cont'd)

- 4. Clever approach #3: the FXF correlator
 - F: bring back the filter bank! (but *digital:* polyphase FIR filters, implemented in field programmable gate arrays)
 - splits a big problem into lots of small problems (sub-bands)
 - digital filters allow recovery of full bandwidth ("baseband") through sub-band stitching
 - X: measure the correlation function at a bunch of different lags (delays)
 - average over time
 - F: Fourier transform the resulting time (lag) series to obtain spectra
 - stich together sub-bands
 - record the results
 - Examples: EVLA/eMERLIN (WIDAR), ALMA (TFB+ALMA-B); preferred for large bandwidths

FXF Output

16 sub-bands

Implementation & choice of architecture

- Correlators are huge
 - Size roughly goes as $N_{bl}BWN_{chan} = N_{ant}^2BWN_{chan}$
 - *N*_{ant} driven up by...
 - sensitivity (collecting area)
 - cost (small is cheap)
 - imaging (more visibilities)
 - field-of-view (smaller dishes ==> larger potential FoV)
 - *BW* driven up by...
 - continuum sensitivity
 - N_{chan} driven up by...
 - spectral lines (spectral resolution, searches, surveys)
 - Radio frequency interference (RFI) from large BW
 - field-of-view (fringe washing = beam smearing = chromatic aberration)

Implementation & choice of architecture

- Example: EVLA's WIDAR correlator (Brent Carlson & Peter Dewdney, DRAO)
 - 2 x 4 x 2= 16 GHz, 32 antennas
 - 128 sub-band pairs
 - Spectral resolution down to below a Hz
 - Up to 4 million spectral channels per baseline
 - Input: 3.8 Tbit/sec ~ 160 DVDs/sec (120 million people in continuous phone conversation)
 - 40e15 operations per second (petaflops)
 - Output (max): 30 Gbytes/sec ~ 7.5 DVDs/sec
- N.B. SKA: ~100x larger: 4000 petaflops! (xNTD approach)

2 of 256 Boards...

WIDAR today

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

1 of 16 🔜 racks...

1.5 hours ago...

ALMA

1 of 4 quadrants

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

Implementation & choice of architecture

- Huge & expensive ==> relies on cutting-edge technology, with trade-offs which change frequently (cf. Romney 1999)
 - Silicon vs. copper
 - Capability vs. power usage
- Example: fundamental hardware: speed & power usage vs. flexibility and "non-recoverable engineering" expense (NRE)
 - Application Specific Integrated Circuit (ASIC) (e.g., GBT, VLA, EVLA, ALMA)
 - Field Programmable Gate Array (FPGA) (e.g., VLBA, EVLA, ALMA)
 - Graphics cards
 - Software (PCs; supercomputers) (e.g., DiFX, LOFAR)
- So big and so painful they tend to be used forever (exceptions: small arrays, VLA, maybe ALMA)
- Trade-offs are so specific they are never re-used (exception: WIDAR)

New Mexico Tech

Details, **Details**

• Why digital?

- precise & repeatable
- "embarassingly parallel" operations
- piggy-back on industry (Moore's law et al.)
- ...but there are some complications as well...

- **1. Sampling:** $v(t) \Rightarrow v(t_k)$, with $t_k = (0, 1, 2, ...) \Im t$
 - For signal v(*t*) limited to $0 < v \le \Delta v$, this is lossless if done at the Nyquist rate:

 $\Delta t \leq 1/(2\Delta v)$

- *n.b.* wider bandwidth \Rightarrow finer time samples!
- limits accuracy of delays/lags
- **2.** Quantization: $v(t) \Rightarrow v(t) + \delta$
 - quantization noise
 - quantized signal is *not* band-limited \Rightarrow oversampling helps
- N.B. FXF correlators quantize *twice*, ruling out most analytic work...

Quantization & Quantization Losses

Figure 4-6. An example of a quantizer transfer function (solid lines); this quantizer has seven levels. The dashed line is the line defined by $v_q = v$, and the difference between it and the transfer function is the quantization noise, δ .

Table 4–1.							
Signal-to-Noise Ratio vs. Quantization and Sampling Rate							
Quantization		Sampling Rate	S/N (digital) S/N (continuous)				
Vq							
V	2-level (1 bit)	$2\Delta\nu$.64				
	`` <i>`</i>	$4\Delta \nu$.74				
	3-level	$2\Delta \nu$ $4\Delta \nu$.81*				
	4-level	$2\Delta \nu$ $4\Delta \nu$.88				
	∞-level (continuous)	$2\Delta \nu$ $4\Delta \nu$	1.00 1.00				

*VLA Case.

All cases assume rectangular bandpasses of width $\Delta \nu$, signal levels adjusted to maximize the signal-to-noise ratio, and small correlation coefficients.

Cross-Correlating a Digital Signal

- We measure the cross-correlation of the digitized (rather than the original) signals.
- digitized CC is monotonic function of original CC
- 1-bit (2-level) quantization:

$$x_{ij}(\tau) = \sigma_i \sigma_j \sin \frac{\pi \rho_{ij}(\tau)}{2}$$

 $- \sigma_i$ is average signal power level - NOT kept for 2-level quantization!

-roughly linear for correlation coefficient

• For high correlation coefficients, requires non-linear correction: the Van Vleck correction

Van Vleck Correction

Digital correlation coefficient

Figure 4-7. Quantization correction functions for various quantizations. In each case the signal powers are set for maximum signal-to-noise ratio. The curves are labeled according to the number of quantization levels; 4a uses a simplified multiplier (see Cooper, 1970).

68

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

- Correlation coefficients are unitless
 - 1.0 ==> signals are identical
- More noise means lower corr'n coeff, even if signal is identical at two antennas
- Must scale corr'n coeff by noise level (Tsys) as first step in calibration

New Mexico

SCIENCE · ENGINEERING · RESEARCI

Spectral Response; Gibbs Ringing

- XF correlator: limited number of lags N
 - \Rightarrow 'uniform' coverage to max. lag $N\Delta t$
 - \Rightarrow Fourier transform gives spectral response

$$\frac{\sin\left(N\Delta\tau\right)\nu}{\left(N\Delta\tau\right)\nu}$$

- 22% sidelobes!
- Hanning smoothing
- FX correlator: as XF, but Fourier transform before multiplication

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

 \Rightarrow spectral response is

- 5% sidelobes

sinc() vs. sinc²()

- *n.b.* radio frequency interference is spread across frequency by the spectral • response
- Gibbs phenomenon: 'ringing' off the band edges

ew Mexico

SCIENCE · ENGINEERING · RESEARCH · UNIVERS

Figure 4-11. (a) The cross power spectrum resulting from a continuum source of unit flux in the reference direction: "true complex gain." Note the nonzero phase. (b) The computed cross power spectrum with 16 delays.

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

The University of New Mexico

Michael's Miniature Correlator

FXF Output: sub-band alignment & aliasing

16 sub-bands

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

FXF Output: sub-band alignment & aliasing

16 sub-bands

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

How to Obtain Finer Frequency Resolution

•The size of a correlator (number of chips, speed, etc.) is generally set by the number of baselines $(\propto N_{ant}^2)$ and the maximum total bandwidth. [note also copper/connectivity costs...]

- Subarrays
 - ... trade antennas for channels
- Bandwidth
 - -- cut Δv :
 - ⇒ same number of lags/spectral points across a smaller Δv : N_{chan} = constant
 - \Rightarrow narrower channels: $v \propto \Delta v$
 - ...limited by filters

-- recirculation:

- chips are generally running flat-out for max. Δv (e.g. EVLA/WIDAR uses a 256 MHz clock with $\Delta v = 128$ MHz/sub-band)
- For smaller Δv , chips are sitting idle most of the time: e.g., pass 32 MHz to a chip capable of doing 128 M multiplies per second
- \Rightarrow add some memory, and send two copies of the data with different delays
- $\Rightarrow N_{chan} \propto 1/\Delta v$
- $\Rightarrow \delta \nu \propto (\Delta \nu)^2$

...limited by memory & data output rates

VLA Correlator: Bandwidths and Numbers of Channels

	Single IP Medet1		Twe IF M	edel ²	Four IP Model ³⁴		
B46.	Bandwidth	No.	Free.	No.	Eken.	No.	Frea.
Cade	孙明 君	Channels ¹⁴⁴	Separ.	Channels ¹³	Separ.	Channels ¹⁰	Separ.
			k Hz	per IP	k Hz	ger IP	新福 定
6	58	16	3128	8	6208	4	12368
1	25	82	781.28	16	1562.5	8	8125
2	12.5	64	195.313	82	398.625	16	781.25
8	6.25	128	48,828	64	27.656	82	195.313
4	3.125	256	12.237	128	24.414	64	48.828
5	1.5625	512	3.652	256	6.164	128	12.267
6	0.78125	512	1.626	266	3.652	128	6.164
8	0.1953125	256	6.763	128	1.526	64	3,652
2	0.1953125	512	6.361	256	0.763	128	1.526

Table 14: Available bandwidths and number of spectral line channels in normal mode

Network

Observing Mades 1A, 1B, 1C, 1D.

 (2) Observing Modes 2AB, 2AC, 2AD, 2BC, 2BD, 2CD.
 (3) Observing Modes 4, PA, PB. It is possible to use the output from one, two or four IFs in such a way as to obtain different combinations of number of spectral line channels and channel superstion. The minimum and maximum number of channels is 4 and 512 respectively.

(4) These are the numbers of spectral line channels creduced in the array processor. Any number of spectral line channels that is a power of 2. that is less than or equal to the number in the table and that is greater than or equal to 2 may be selected using the data selection extings available within the ORSENCE and JORSENVE entering.

VLBI

- difficult to send the data to a central location in real time
- long baselines, unsynchronized clocks ⇒ relative phases and delays are poorly known
- So, record the data and correlate later
- Advantages of 2-level recording

Correlator Efficiency η_c

- quantization noise
- overhead
 - don't correlate all possible lags
 - blanking
- errors
 - incorrect quantization levels
 - incorrect delays

- number of multiplies: FX wins as {N_{ant}, N_{chan}}↑
 multiplies per second ~ N_{ant}² Δv N_{prod} N_{chan}
- number of logic gates: XF multiplies are much easier than FX; which wins, depends on current technology
- shuffling the data about: "copper" favors XF over FX for big correlators
- bright ideas help: hybrid correlators, nifty correlator chips, etc.

New Mexico Correlators

			-
	VLA	EVLA (WIDAR)	VLBA
Architecture	XF	FXF	FX
Quantization	3-level	16/256-level	2- or 4-level
N _{ant}	27	40	20
Μ αχ. Δν	0.2 GHz	16 GHz	0.256 GHz
N _{chan}	1 - 512	16,384 - 262,144	256 - 2048
Min. δν	381 Hz	0.12 Hz	61.0 Hz
dt _{min}	1.7 s	0.01 s	0.13 s
Power req't.	50 kW	135 kW	10-15 kW
Data rate	3.3 x 10 ³ vis/sec	2.6 x 10 ⁷ vis/sec	3.3 x 10 ⁶ vis/sec

Current VLA

EVLA/WIDAR

	Single Po	I. Prod.	Two Pol.Prod.		Four Pel.Prod.				Single P
Bandwidth	No.	Freq.	No.	Freq.	No.	Freq.		Bandwidth	No.
MHz	Channels	Separ.	Channels	Separ.	Channels	Separ.		MHz	Channels
		kHz	per pol	kHz	per pol	kHz			
100	16	6250	8	12500	2	\$0000		8192	16,384
50	16	3125	8	6250	4	12500		4096	$16,\!384$
25	32	781.25	16	1562.5	8	3125		2048	32,768
12.5	64	195.313	32	390.625	16	781.25		1024	$65,\!536$
8.25	128	48.828	64	97.656	32	195.313		512	131,072
3.125	256	12.207	128	24.414	64	48.828		256	262,144
1.5625	512	3.052	256	6.104	128	12.207		128	262,144
0.78125	512	1.526	256	3.052	128	6.104		64	262,144
0.19531	512	0.381	256	0.763	128	1.526		32	262,144
	Ŧ	7	7	7	7		1	16	262,144

	Single Pol. Prod.		Two Pol	.Prod.	Four Pol.Prod.		
and width	No.	Freq.	No.	Freq.	No.	Freq.	
MHz	Channels	Separ.	Channels	Separ.	Channels	Separ.	
		kHz	per pol	kHz	per pol	kHz	
8192	16,384	500	8,192	1000	4,096	2000	
4096	$16,\!384$	250	$8,\!192$	500	4,096	1000	
2048	32,768	62.5	$16,\!384$	31.25	8,192	250	
1024	$65,\!536$	15.625	32,768	31.25	16,384	62.5	
512	131,072	3.906	$65,\!536$	7.813	32,768	15.625	
256	262,144	0.977	131,072	1.953	65,536	3.906	
128	262,144	0.488	131,072	0.977	65,536	1.953	
64	262,144	0.244	131,072	0.488	65,536	0.977	
32	262,144	0.122	131,072	0.244	65,536	0.488	
16	262,144	0.061	131,072	0.122	65,536	0.244	
8	262,144	0.031	131,072	0.061	65,536	0.122	
4	262,144	0.015	131,072	0.031	65,536	0.061	
2	262,144	0.008	131,072	0.015	65,536	0.031	
1	262,144	$3.8~\mathrm{Hz}$	131,072	$7.6~\mathrm{Hz}$	65,536	0.015	
0.5	262,144	$1.9~\mathrm{Hz}$	131,072	$3.8~\mathrm{Hz}$	65,536	$7.6~\mathrm{Hz}$	
0.25	262,144	$0.95~\mathrm{Hz}$	131,072	$1.9~\mathrm{Hz}$	65,536	3.8 Hz	
0.125	262,144	$0.48~\mathrm{Hz}$	131,072	$0.95~\mathrm{Hz}$	65,536	1.9 Hz	
0.0625	262,144	$0.24~\mathrm{Hz}$	131,072	$0.48~\mathrm{Hz}$	65,536	$0.95~\mathrm{Hz}$	
0.03125	262,144	$0.12~\mathrm{Hz}$	131,072	$0.24~\mathrm{Hz}$	65,536	$0.48~\mathrm{Hz}$	

