

Antennas and Receivers in Radio Astronomy

Mark McKinnon

Outline

- Context
- Types of antennas
- Antenna fundamentals
- Reflector antennas
 - Mounts
 - Optics
- Antenna performance
 - Aperture efficiency
 - Pointing
 - Polarization
- Receivers

Importance of the Antenna Elements

- Antenna amplitude pattern causes amplitude to vary across the source.
- Antenna phase pattern causes phase to vary across the source.
- Polarization properties of the antenna modify the apparent polarization of the source.
- Antenna pointing errors can cause time varying amplitude and phase errors.
- Variation in noise pickup from the ground can cause time variable amplitude errors.
- Deformations of the antenna surface can cause amplitude and phase errors, especially at short wavelengths.

ortium's

Types of Antennas

- Wire antennas $(\lambda > 1m)$
 - Dipole
 - Yagi
 - Helix
 - Small arrays of the above
- Reflector antennas
- Hybrid antennas $(\lambda \approx 1m)$
 - Wire reflectors
 - Reflectors with dipole feeds
- $(\lambda < 1m)$ $\lambda \approx 1m)$

Helix

**

Basic Antenna Formulas

Effective collecting area $A(v,\theta,\phi)$ m²

On-axis response $A_0 = \eta A$ η = aperture efficiency

Normalized pattern (primary beam) $A(v,\theta,\phi) = A(v,\theta,\phi)/A_0$

Beam solid angle $\Omega_{A} = \iint_{\text{all sky}} \mathbf{A}(v,\theta,\phi) \, d\Omega$

 $A_0 \Omega_A = \lambda^2$ λ = wavelength, v = frequency

Aperture-Beam Fourier Transform Relationship 7

What determines the beam shape?

f(u,v) = complex aperture field distribution u,v = aperture coordinates (wavelengths)

F(I,m) = complex far-field voltage patternI = sin θ cos ϕ , m = sin θ sin ϕ

 $F(I,m) = \iint_{aperture} f(u,v) \exp(2\pi i(uI+vm)) dudv$ $f(u,v) = \iint_{hemisphere} F(I,m) \exp(-2\pi i(uI+vm)) dIdm$

For VLA: θ_{3dB} = 1.02/D, First null = 1.22/D, D = reflector diameter in wavelengths

Antenna Mounts: Altitude over Azimuth

Beam Rotation on the Sky

Antenna Mounts: Equatorial

- Advantages
 - Tracking accuracy
 - Beam doesn't rotate
- Disadvantages
 - Cost
 - Gravity performance
 - Sources on horizon at pole

Reflector Optics

Prime focus

Offset Cassegrain

Beam Waveguide

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

The University of New Mexico

Cassegrain focus

Naysmith

Dual Offset

Reflector Optics: Limitations

• Prime focus

- Over-illumination (spillover) can increase system temperature due to ground pick-up
- Number of receivers, and access to them, is limited
- Subreflector systems
 - Can limit low frequency capability. Feed horn too large.
 - Over-illumination by feed horn can exceed gain of reflector's diffraction limited sidelobes
 - Strong sources a few degrees away may limit image dynamic range
- Offset optics
 - Support structure of offset feed is complex and expensive

Reflector Optics: Examples

Prime focus (GMRT)

Offset Cassegrain (VLA)

Beam Waveguide (NRO)

金

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

Dual Offset (GBT)

Cassegrain focus

(AT)

Naysmith

(OVRO)

Feed Systems

Antenna Performance: Aperture Efficiency

On axis response: $A_0 = \eta A$ Efficiency: $\eta = \eta_{sf} \times \eta_{bl} \times \eta_s \times \eta_t \times \eta_{misc}$

- $$\begin{split} \eta_{sf} &= \text{Reflector surface efficiency} \\ \text{Due to imperfections in reflector surface} \\ \eta_{sf} &= \text{exp}(-(4\pi\sigma/\lambda)^2) \quad \text{e.g., } \sigma &= \lambda/16 \text{ , } \eta_{sf} &= 0.5 \end{split}$$
- η_{bl} = Blockage efficiency Caused by subreflector and its support structure
- η_s = Feed spillover efficiency Fraction of power radiated by feed intercepted by subreflector
- η_t = Feed illumination efficiency Outer parts of reflector illuminated at lower level than inner part
- η_{misc} = Reflector diffraction, feed position phase errors, feed match and loss

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

Antenna Performance: Aperture Efficiency

Antenna Pointing: Practical Considerations ¹⁷

Az encoder

Antenna Performance: Pointing

Pointing Accuracy $\Delta \theta$ = rms pointing error

Often $\Delta \theta < \theta_{3dB}$ /10 acceptable, because $A(\theta_{3dB}$ /10) ~ 0.97

BUT, at half power point in beam $A(\theta_{3dB}/2 \pm \theta_{3dB}/10)/A(\theta_{3dB}/2) = \pm 0.3$

For best VLA pointing use Reference Pointing. $\Delta \theta = 3 \operatorname{arcsec} = \theta_{3dB} / 17 @ 50 \text{ GHz}$

Antenna Performance: Polarization

Antenna can modify the apparent polarization properties of the source:

- Antenna structure
 - Symmetry of the optics
 - Reflections in the optics
 - Curvature of the reflectors
- Quality of feed polarization splitter
 - Constant across the beam
- Circularity of feed radiation patterns
 - No instrumental polarization on-axis,
 - But cross-polarization varies across the beam …

Off-Axis Cross Polarization

Field distribution in aperture of paraboloid fed by electric dipole

VLA 4.8 GHz cross-polarized primary beam

Eleventh Synthesis Imaging Workshop, June 10-17, 2008

Receivers: Noise Temperature

- Reference received power to the equivalent temperature of a matched load at the input to the receiver
- Rayleigh-Jeans approximation to Planck radiation law for a blackbody

$$P_{in} = k_B T \Delta v \quad (W)$$

 P_{in}

Gain G
B/W
$$\Delta v$$
 P_{out}
Receiver

P_{out}=G*P_{in}

 $k_{\rm B}$ = Boltzman's constant (1.38*10⁻²³ J/°K)

- When observing a radio source, $T_{total} = T_A + T_{sys}$
 - Tsys = system noise when not looking at a discrete radio source
 - $-T_A =$ source antenna temperature

Receivers: SEFD

EVLA Sensitivities

Band (GHz)	η	T _{sys}	SEFD
1-2	.50	21	236
2-4	.62	27	245
4-8	.60	28	262
8-12	.56	31	311
12-18	.54	37	385
18-26	.51	55	606
26-40	.39	58	836
40-50	.34	78	1290

S = source flux (Jy)
SEFD = system equivalent flux density
SEFD = Tsys/K (Jy)

 $T_A = \eta AS/(2k_B) = KS$

EVLA Q-Band (40-50 GHz) Receiver

SCIENCE · ENGINEERING · RESEARCH · UNIVERSITY

The University of New Mexico

Corrections to Chapter 3 of Synthesis Imaging in Radio Astronomy II

Equation 3-8: replace u,v with I,m Figure 3-7: abscissa title should be π DI

