Real-Time E-VLBI
with the SFXC
Software Correlator

Mark Kettenis kettenis@jive.nl
Aard Keimpema keimpema@jive.nl
JIVE
SFXC

- SFXC = S? FX Correlator
 - Where S? used to mean “Super”
- Uses MPI to distribute/parallelize computation
- Descendant of the correlator used for to track descent of Huygens probe on Titan
- VEX driven
- Pulsar binning/gating
- High spectral resolution
- Accepts Mark4, VLBA, Mark5B and VDIF data
- Data product compatible with the Mark 4 correlator at JIVE
 - But higher data quality
New Features

• Multiple phase centers
 ▫ Use high time/spectral resolution internally to prevent smearing
 ▫ Apply phase shift for each center
 ▫ Average down to desired time/spectral resolution

• WOLA
 ▫ Windowing functions: Rectangular, Hann, Hamming, Cosine
 Adding other functions is trivial

• Space Science features
 ▫ Improved delay tracking for high spectral resolution
 ▫ Near-field model (Dmitry Duev)
 ▫ Possibility to include Doppler-shift in model

• Operational tools
 ▫ weight display, fringe display, clock search tool

Correlation shifting from Mark 4 correlator to SFXC
 ▫ More than half of the June 2011 EVN session correlated on SFXC
Direct Mark5 Diskpack Access

Simple software to:
- Isolate correlator software from StreamStor SDK
- Do automatic bank switching

Maximum throughput 1.2 Gbit/s (on Mark5A)
Direct Mark5 Diskpack Access

1. sfxc sends VSN + byte offset to mk5read

2. mk5read selects bank

3. kk5read sends data to sfxc
e-VLBI with SFXC

- Continue to use Mark5s for data input
- Replace *mk5read* with *mk5udp*

- Strip Packet Sequence Number and forward data

If network connection breaks, correlation will stop!
e-VLBI with SFXC

No packets received? Send fake frame every second

- Wait 2s before sending first fake frame
- Send frame with timestamp 1s in the past
- Supports generation of Mark4, Mark5B and VDIF frames
 - Mark4 & Mark5B: use fill pattern to mark data as invalid
 - VDIF: use validity bit in VDIF header

Initial testing done with Mark5 simulator (Bob Eldering, EXPReS)
- Add VDIF support (single-thread, single-channel for now)
Simulation setup

MPI

mark5_simul

mk5udp

sfxc
(input node)

sfxc
(corr. node)

mark5_simul

mk5udp

sfxc
(input node)

sfxc
(corr. node)

sfxc
(corr. node)

sfxc
(corr. node)

run_evlbi_job.py
First e-VLBI fringes

6-stations @512 Mbit/s
Elliptical Robin

How to get 1024 Mbit/s over a 2×1Gbit/s links?
and leave room for some other MERLIN stations

Use modified Ethernet bonding driver
5 packets on 1st interface, 1 packet on 2nd
By Paul Boven

Packets will arrive out of order
mk5udp doesn’t reorder
SFXC discards out-of-order data

Replace mk5udp with jive5ab
jive5ab properly reorders packets
and supports channel dropping
Hardware Upgrade

- Added 16 new nodes
 - Now 32 nodes, 256 cores
- Equipped 4 nodes with 10Gbit/s Ethernet
 - Directly connected to e-VLBI network
- Integrated Mark5A+/Mark5B/Mark5C’s with the cluster
 - All on 10Gbit/s Ethernet
 - Total of 24 playback units

Should allow real-time correlation of 9 stations @1024 Mbit/s
Need to improve software to fix Mark5 bottleneck
Speed Up Dechannellisation

- Current code uses JIT compilation
 - Fast, but not fast enough

- Use SSE instructions
 - CPUs in Mark5s @JIVE only support SSE2
 - Speedup of a factor 2
 - Hand written assembly code
 - Can be automatically generated?
 - I/O bottleneck remains
 - Parallelisation needed

- Use VDIF with single-channel frames
 - No dechannellisation necessary
 - Parallel I/O becomes trivial
VDIF/VTP support

- SFXC accepts single-channel VDIF frames
- mk5udp accepts the proposed VTP packets
 - Currently just strips the VTP header
- jive5ab VTP support is under development (Harro Verkouter)
 - On-the-fly conversion of Mark4 and Mark5B data to VDIF
 - Single-channel VDIF frames

Key to truly distributing correlation over multiple clusters!
Global Correlation

Distribute subbands over correlation centers

Onsala → Poznan
Irbene → Dwingeloo
Mopra → Perth
NEXPreS WP7 Update

“Computing in a shared infrastructure”

Create an automated, distributed correlator using the global, shared infrastructure of the EVN and its associated global partners

- Web-based Workflow Manager
 - Development well underway (Poznan)
- Automatic schedule generation
 - Prototype ready (Onsala)
 - Now working on acting upon triggers
- SFXC deployed at JIVE, Poznan, Ventspils
Questions?

Research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° RI-261525 NEXPReS. This material reflects only the author's views, and the European Community is not liable for any use that may be made of the information contained therein.

Additional Information at http://nexpres.eu